Modélisation de propagation de fissure par un PDMP

Romain Azaïs, Anne Gégout-Petit, Marie Touzet, Charles Elegbede

IMB - Equipe CQFD, INRIA - LMP - EADS Astrium

Réunion GTR 22

Plan

- L'aléa dans la modélisation
- 2 Ajustement sur les données de Virkler
 - Ajustement par morceaux
 - Résultats obtenus

3 Modèles de propagation de fissure

- Modèle général
- Principe d'actualisation

④ Simulations et validation du modèle

- Simulations
- Critères numériques de validation
- Validation croisée et comparaison avec un modèle sans saut

Loi de Paris-Erdogan (propagation de fissure)

$$\frac{\mathrm{d}a}{\mathrm{d}N} = C(\Delta\sigma\sqrt{\pi})^m \cos\left(\frac{\pi}{\omega}a\right)^{-\frac{m}{2}} a^{\frac{m}{2}} \tag{P-E}$$

 $\hookrightarrow \text{\'evolution deterministe}$

Loi de Paris-Erdogan (propagation de fissure) $\frac{da}{dN} = C(\Delta\sigma\sqrt{\pi})^m \cos\left(\frac{\pi}{\omega}a\right)^{-\frac{m}{2}}a^{\frac{m}{2}} \qquad (P-E)$

 $\hookrightarrow \text{\'evolution d\'eterministe}$

Expérience de Virkler

 $\Delta \sigma =$ 48.28MPa et $\omega =$ 152.4mm

Modèle PDMP de prop. de fissure

Données expérimentales de Virkler

$\hookrightarrow \mathsf{dispersion} \ \mathsf{importante}\, !$

Modèle PDMP de prop. de fissure

Les données de Virkler

- 68 éprouvettes préfissurées (9mm)
- Contrainte cyclique d'amplitude constante
- 164 mesures par éprouvette
- Arrêt à la longueur 49.8mm (1/3 de l'éprouvette)

Loi de Paris-Erdogan

$$\frac{\mathrm{d}a}{\mathrm{d}N} = C(\Delta\sigma\sqrt{\pi})^m \cos\left(\frac{\pi}{\omega}a\right)^{-\frac{m}{2}} a^{\frac{m}{2}} \tag{P-E}$$

Suivant les modélisations, le couple de paramètres (m, C) peut être :

- une variable aléatoire "choisie" à l'instant initial,
- un processus évoluant dans un espace continu,
- une chaîne de Markov à temps continu.

Evolution du processus

A préciser :

- la loi initiale des paramètres,
- la loi du temps de saut,
- le noyau de transition pour les paramètres.

Plan

2 Ajustement sur les données de Virkler

- Ajustement par morceaux
- Résultats obtenus

3 Modèles de propagation de fissure

- Modèle général
- Principe d'actualisation

4 Simulations et validation du modèle

- Simulations
- Critères numériques de validation
- Validation croisée et comparaison avec un modèle sans saut

Données de Virkler

68 courbes :
$$ig\{(\mathit{N}_q^{(k)}, \mathit{a}_q^{(k)})_{1\leq q\leq 164}ig\}_{1\leq k\leq 68}$$

Données de Virkler

68 courbes : $\left\{ (N_q^{(k)}, a_q^{(k)})_{1 \le q \le 164} \right\}_{1 \le k \le 68}$

 $a_{th}(m_1, C_1, T, m_2, C_2)$: courbe théorique définie par morceaux

pour $0 \le N < T$, $a_{th}(N)$: P-E de paramètres m_1 et C_1

pour $N \ge T$, $a_{th}(N)$: P-E de paramètres m_2 et C_2

$$\frac{\mathrm{d}a}{\mathrm{d}N} = C(\Delta\sigma\sqrt{\pi})^m \cos\left(\frac{\pi}{\omega}a\right)^{-\frac{m}{2}}a^{\frac{m}{2}} \tag{P-E}$$

Ajustement par morceaux

Pour chaque fissure k, on minimise

$$\sum_{q=1}^{164} \left\{ a_q^{(k)} - a_{th}(m_1, C_1, T, m_2, C_2)(N_q^{(k)}) \right\}^2$$

(Somme des carrés des écarts verticaux)

$$\hookrightarrow \ \left(m_1^{(k)\star}, C_1^{(k)\star}, T^{(k)\star}, m_2^{(k)\star}, C_2^{(k)\star} \right)$$

Quelques statistiques des résultats obtenus

Quelques statistiques des résultats obtenus

	min	max	moyenne	écart-type
m_1^{\star}	2.313	2.541	2.462	4.6810^{-2}
$\ln(C_1^{\star})$	-24.247	-23.740	-24.013	$1.18.10^{-1}$
\overline{N}^{\star}	28207	258046	118004	51577
<i>m</i> [*] ₂	2.446	2.597	2.535	$3.14.10^{-2}$
$\ln(C_2^{\star})$	-24.423	-23.736	-24.048	$1.39.10^{-1}$

Plan

Résultats obtenus

3 Modèles de propagation de fissure

- Modèle général
- Principe d'actualisation

4 Simulations et validation du modèle

- Simulations
- Critères numériques de validation
- Validation croisée et comparaison avec un modèle sans saut

PDMP pour la propagation de fissures

$$\forall N \geq 0, \ X_N = (\nu_N, \zeta_N)$$

Espace d'états du mode

 $u_{N} \in \mathcal{M} imes \mathcal{C} \,\,$ de cardinal fini

On utilise les résultats d'ajustement pour déterminer :

- l'espace $\mathcal{M} \times \mathcal{C}$,
- l'intensité de saut $\lambda_{(m,C)}$,
- le noyau de transition *M* des paramètres.

1 - Choix aléatoire des paramètres initiaux

$$u_0 = (m, C) \in \mathcal{M} \times \mathcal{C} \quad (et \zeta_0 = 9)$$

2 - Evolution déterministe pendant un temps aléatoire

 $orall 0 \leq {\it N} < {\it T}, \; \zeta_{\it N}\;:\;$ P-E de paramètres m et C

avec $\mathbb{P}(T > s) = \exp\{-\lambda_{(m,C)}s\}$

3 - Transition aléatoire des paramètres à l'instant T, saut du mode selon un noyau de transition M :

$$u_{\mathcal{T}} = (\tilde{m}, \tilde{C}) \in \mathcal{M} \times \mathcal{C}$$

4 - Nouvelle évolution déterministe

 $orall N \geq T, \ \zeta_N$: P-E de paramètres $ilde{m}$ et $ilde{C}$

1 - Choix aléatoire des paramètres initiaux

$$u_0 = (m, C) \in \mathcal{M} \times \mathcal{C} \quad (\text{et } \zeta_0 = 9)$$

2 - Evolution déterministe pendant un temps aléatoire

 $\forall 0 \leq N < T, \ \zeta_N$: P-E de paramètres *m* et *C*

avec $\mathbb{P}(T > s) = \exp\{-\lambda_{(m,C)}s\}$

3 - Transition aléatoire des paramètres à l'instant T, saut du mode selon un noyau de transition M :

$$u_{\mathcal{T}} = (\tilde{m}, \tilde{C}) \in \mathcal{M} \times \mathcal{C}$$

4 - Nouvelle évolution déterministe

 $\forall N \geq T, \ \zeta_N \ : \ \mathsf{P} ext{-}\mathsf{E} ext{ de paramètres } ilde{m} ext{ et } ilde{\mathcal{C}}$

1 - Choix aléatoire des paramètres initiaux

$$u_0 = (m, C) \in \mathcal{M} \times \mathcal{C} \quad (\text{et } \zeta_0 = 9)$$

2 - Evolution déterministe pendant un temps aléatoire

 $\forall 0 \leq N < T, \ \zeta_N$: P-E de paramètres *m* et *C*

avec $\mathbb{P}(T > s) = \exp\{-\lambda_{(m,C)}s\}$

3 - Transition aléatoire des paramètres à l'instant T, saut du mode selon un noyau de transition M :

$$\nu_{\mathcal{T}} = (\tilde{m}, \tilde{C}) \in \mathcal{M} \times \mathcal{C}$$

4 - Nouvelle évolution déterministe

 $\forall N \geq T, \ \zeta_N \ : \ \mathsf{P}\text{-}\mathsf{E} \ \mathsf{de} \ \mathsf{paramètres} \ ilde{m} \ \mathsf{et} \ ilde{C}$

 $\mathcal{A}.\mathcal{R}.$

1 - Choix aléatoire des paramètres initiaux

$$u_0 = (m, C) \in \mathcal{M} \times \mathcal{C} \quad (\text{et } \zeta_0 = 9)$$

2 - Evolution déterministe pendant un temps aléatoire

 $\forall 0 \leq N < T, \ \zeta_N$: P-E de paramètres *m* et *C*

avec $\mathbb{P}(T > s) = \exp\{-\lambda_{(m,C)}s\}$

3 - Transition aléatoire des paramètres à l'instant T, saut du mode selon un noyau de transition M :

$$\nu_T = (\tilde{m}, \tilde{C}) \in \mathcal{M} \times \mathcal{C}$$

4 - Nouvelle évolution déterministe

 $\forall N \geq T, \ \zeta_N \ : \ \mathsf{P}\text{-}\mathsf{E} \ \mathsf{de} \ \mathsf{paramètres} \ ilde{m} \ \mathsf{et} \ ilde{C}$

Loi initiale du mode

Transition du mode

Actualisation

Pour la fissure k, on dispose des l premières mesures

 $(N_q^{(k)},a_q^{(k)})_{1\leq q\leq l}$

On prend en compte les / mesures :

- nouvelle loi initiale du mode
- ullet saut contraint au bout d'un temps ne dépendant que de u_0
- nouvelle matrice de transition

Nouvelle loi initiale du mode

Instant de transition forcée

Nouvelle loi de transition

Loi initiale (simulations)

Loi de transition (simulations)

Plan

- Modèle général
- Principe d'actualisation

4 Simulations et validation du modèle

- Simulations
- Critères numériques de validation
- Validation croisée et comparaison avec un modèle sans saut

Simulations selon le modèle général

faisceau simulé (Card($\mathcal{M} \times \mathcal{C}$) = 40) et données de Virkler \mathcal{M}_{INRIA}

Faisceau de prédiction pour la fissure 67

Critères numériques de validation

Faisceau simulé selon le principe d'actualisation

 $\mathcal{F}^{(k)} = ig\{ f_1^{(k)}, \dots, f_{100}^{(k)} ig\}$ où $f_j^{(k)}$: courbe simulée

Critère numérique : distance de \mathcal{F}_k à la courbe k

$$\mathcal{D}(\mathcal{F}^{(k)}, \ll \text{ fissure } k \gg) = \frac{1}{N_Q^{(k)}} \sum_{q=l+1}^Q d_q^{(k)}$$

Critères retenus

- \mathcal{D} : distance au faisceau (sans unité),
- $d_Q^{(k)}$: distance pour la dernière mesure (en nombre de cycles),
- dispersion du faisceau (en nombre de cycles).

Validation croisée : *leave one out*

 $d_{0}^{(k)} = 0$

Modèle PDMP avec actualisation – Card(K) = 20

- pour 40% des fissures : $\mathcal{D}(\mathcal{F}^{(k)}, \ll \text{ fissure } k \gg) = 0$
- pour 70% des fissures : $\mathcal{D}(\mathcal{F}^{(k)}, \ll \text{ fissure } k \gg) < 1$

• pour 66% des fissures :

Comparaison avec un modèle sans saut

Fissures rapides

	Modèle PDMP	Modèle sans saut
$\mathcal{D}(\mathcal{F}^{(k)}, \ll fissure \ k \gg) = 0$	8/11	0/11
$\mathcal{D}(\mathcal{F}^{(k)}, lpha ext{ fissure } k wedge) < 1$	11/11	1/11
$d_Q^{(k)} = 0$	9/11	7/11
dispersion moyenne	6191 cycles	9468 cycles

Comparaison avec un modèle sans saut

Fissures lentes

	Modèle PDMP	Modèle sans saut
$\mathcal{D}(\mathcal{F}^{(k)}, lpha ext{ fissure } k wedge) = 0$	0/7	0/7
$\mathcal{D}(\mathcal{F}^{(k)}, lpha ext{ fissure } k wedge) < 1$	0/7	0/7
$d_Q^{(k)} = 0$	1/7	1/7
dispersion moyenne	9863 cycles	8988 cycles
moyenne de $d_Q^{(k)}$	30644 cycles	15007 cycles

Comparaison avec un modèle sans saut

Fissures "standards"

	Modèle PDMP	Modèle sans saut
$\mathcal{D}(\mathcal{F}^{(k)}, \ll fissure \ k \gg) = 0$	18/50	1/50
$\mathcal{D}(\mathcal{F}^{(k)}, \ll fissure \ k \gg) < 1$	38/50	23/50
$d_Q^{(k)} = 0$	35/50	49/50
dispersion moyenne	7593 cycles	9130 cycles

Forecasting for crack 2 (pdmp model)

Forecasting for crack 2 (no jump model)

 $\mathcal{A}.\mathcal{R}$

Bibliographie

- J. Chiquet, N. Limnios & M. Eid : **PDMPs applied to fatigue crack** growth modelling, J.S.P.I. 139 (2009) 1657-1667
- M.H.A. Davis : Piecewise-deterministic Markov Processes : A General Class of Non-diffusion Stochastic Models, J.R.Statist. Soc. B. (1984), 46, No.3, pp. 353-388
- F. Perrin : Prise en compte des données expérimentales dans les modèles probabilistes pour la prévision de la durée de vie des structures, thèse de doctorat
- D.A. Virkler, B.M. Hillberry & P.K. Goel, 1979, The statistical nature of fatigue crack propagation, J. Engng Mater Tech , Trans. ASME, 101 : 148-153

