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This work concerns the evaluation of reliability indices with a stochastic method. Namely,
we are focused here on the computation of expectations of functionals of piecewise deterministic
Markov processes. We propose a numerical scheme to approximate such expectations, analyze the
convergence of our scheme and derive bounds for the convergence rate. The partners involved are
INRIA CQFD and Astrium. People involved are A. Brandejsky, B. de Saporta (CQFD), F. Dufour
(CQFD) and C. Elegbede (Astrium). This work was not planned in the initial project.

1 Context
Piecewise-deterministic Markov processes (PDMP’s) have been introduced in the literature by
M.H.A. Davis [7] as a general class of stochastic models. PDMP’s are a family of Markov processes
involving deterministic motion punctuated by random jumps. The motion of the PDMP {X(t)}
depends on three local characteristics, namely the flow φ, the jump rate λ and the transition measure
Q, which specifies the post-jump location. Starting from x the motion of the process follows the
flow φ(x, t) until the first jump time T1 which occurs either spontaneously in a Poisson-like fashion
with rate λ(φ(x, t)) or when the flow φ(x, t) hits the boundary of the state-space. In either case
the location of the process at the jump time T1: X(T1) = Z1 is selected by the transition measure
Q(φ(x, T1), ·). Starting from Z1, we now select the next interjump time T2 − T1 and postjump
location X(T2) = Z2. This gives a piecewise deterministic trajectory for {X(t)} with jump times
{Tk} and post jump locations {Zk} which follows the flow φ between two jumps. A suitable choice
of the state space and the local characteristics φ, λ, and Q provides stochastic models covering a
great number of problems of operations research [7].

We are interested in the approximation of expectations of the form

Ex

∫ TN

0
l(Xt)dt+

N∑
j=1

c(XT−j
)1{X

T−
j
∈∂E}


where (Xt)t≥0 is a PDMP and l and c are some non negative, real-valued, bounded functions.
Such expectations are discussed by M.H.A. Davis in [7], chapter 3. They often appear as “cost” or
“reward” functions in optimization problems. The first term is referred to as the running cost while
the second may be called the boundary jump cost. Besides, they are quite general since M.H.A.
Davis shows how a “wide variety of apparently different functionals” can be obtained from the
above specific form. For example, this wide variety includes quantities such as a mean exit time
and even, for any fixed t ≥ 0, the distribution of Xt (i.e. Ex[1F (Xt)] where F is a measurable set).

There are surprisingly few works in the literature devoted to the actual computation of such
expectations, using other means than direct Monte Carlo simulations. M.H.A Davis showed that
these expectations satisfy integro-differential equations. However, the set of partial differential
equations that is obtained is unusual. Roughly speaking, these differential equations are basically
transport equations with a non-constant velocity and they are coupled by the boundary conditions
and by some integral terms involving kernels that are derived from the properties of the underlying
stochastic process. This approach is currently under study in this project by LATP. The main
difficulty comes from the fact that the domains on which the equations have to be solved vary from
one equation to another making their numerical resolution highly problem specific. Another similar
approach has been recently investigated in [6, 8]. It is based on a discretization of the Chapman
Kolmogorov equations satisfied by the distribution of the process (Xt)t≥0. The authors propose an
approximation of such expectations based on finite volume methods. Unfortunately, their method
is only valid if there are no jumps at the boundary.
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2 Approach
Our approach is completely different and does not rely on differential equations, but on the fact that
such expectations can be computed by iterating an integral operator G. This operator only involves
the embedded Markov chain (Zn, Sn)n∈N and conditional expectations. It is therefore natural to
propose a computational method based on the quantization of this Markov chain, following the
same idea as [3].

There exists an extensive literature on quantization methods for random variables and processes.
The interested reader may for instance consult [9], [10] and the references within. Quantization
methods have been developed recently in numerical probability or optimal stochastic control with
applications in finance (see e.g. [4], [5] and [10]). The quantization of a random variable X consists
in finding a finite grid such that the projection X̂ of X on this grid minimizes some Lp norm of the
difference X−X̂. Roughly speaking, such a grid will have more points in the areas of high density of
X. As explained for instance in [10], section 3, under some Lipschitz-continuity conditions, bounds
for the rate of convergence of the quantized process towards the original process are available.

3 Results
We have developped a numerical method to compute expectations of functionals of the above form
where the cost functions l and c satisfy some Lipschitz-continuity conditions. We first recall the
results presented by M.H.A. Davis according to whom, the above expectation may be computed
by iterating an operator denoted G. Consequently, it appears natural to follow the idea developed
in [3] namely to express the operator G in terms of the underlying discrete-time Markov chain
(Zn, Sn)n∈N and to replace it by its quantized approximation. Moreover, in order to prove the
convergence of our algorithm, we replace the indicator function 1{X

T−
j
∈∂E} contained within the

functional by some Lipschitz continuous approximation. Bounds for the rate of convergence are
then obtained.

We also addressed two important aspects that had not been investigated in [3]. The first one
consists in allowing c and l to be time depending functions, although still Lipschitz continuous, so
that we may compute expectations of the form

Ex

∫ TN

0
l(Xt, t)dt+

N∑
j=1

c(XT−j
, Tj)1{X

T−
j
∈∂E}

 .
This important generalization has huge applicative consequences. For instance, it allows discounted
“cost” or “reward” functions such as l(x, t) = e−δtl(x) and c(x, t) = e−δtc(x) where δ is some interest
rate. To compute the above expectation, our strategy consists in considering, as it is suggested by
M.H.A. Davis in [7], the time augmented process X̃t = (Xt, t).

The second important generalization is to consider the deterministic time horizon problem.
Indeed, it seems crucial, regarding to the applications, to be able to approximate

Ex

[ ∫ tf

0
l(Xt, t)dt+

∑
Tj≤tj

c(XT−j
, Tj)1{X

T−
j
∈∂E}
]

=Ex

[ ∫ +∞

0
l(Xt, t)1{t≤tf}dt+

+∞∑
j=1

c(XT−j
, Tj)1{X

T−
j
∈∂E}1{Tj≤tf}

]
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for some fixed tf > 0 regardless of how many jumps occur before this deterministic time. To com-
pute this quantity, we start by choosing a time N such that P (TN < tf ) be small so that the pre-

vious expectation boils down to Ex

[∫ TN
0 l(Xt, t)1{t≤tf}dt+

∑N
j=1 c(XT−j

, Tj)1{X
T−
j
∈∂E}1{Tj≤tf}

]
.

We deal with the two indicator functions in two different ways. On the one hand, we prove that it
is possible to relax the regularity condition on the running cost function so that our algorithm still
converges in spite of the first indicator function. On the other hand, since the same reasoning can-
not be applied to the indicator function within the boundary jump cost term, we bound it between
two Lipschitz continuous functions. This provides bounds for the expectation of the deterministic
time horizon functional.

An important advantage of our method is that it is flexible. Indeed, as pointed out in [4], a
quantization based method is “obstacle free” which means, in our case, that it produces, once and
for all, a discretization of the process independently of the functions l and c since the quantization
grids merely depend on the dynamics of the process. They are only computed once, stored off-line
and may therefore serve many purposes. Once they have been obtained, we are able to approximate
very easily and quickly any of the expectations described earlier. This flexibility is definitely an
important advantage of our scheme over standard methods such as Monte-Carlo simulations since,
with such methods, we would have to run the whole algorithm for each expectation we want to
compute.

4 Applications
The numerical procedure described above has been first tested on an academic model of PDMP
corresponding to a repair workshop model. An investigation of an industrial corrosion problem
proposed by Astrium is currently under investigation.

5 Dissemination of results
The theoretical part of this work with rigorous proofs is under review for an international peer-
reviewed journal [2]. F. Dufour presented this work in an invited session at an international
conference [1].
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