In the context of the so-called vanishing discount approach,
derivation of sufficient conditions for the existence of optimal feedback
control.
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This work is concerned with the existence of an optimal control strategy for the long run average
continuous control problem of piecewise deterministic Markov processes (PDMP’s). In a previous
work (see report 3.3.1), sufficient conditions were derived to ensure the existence of an optimal
control by using the vanishing discount approach. These conditions were mainly expressed in terms
of the relative difference of the a-discount value functions. The main goal of this work is to derive
tractable conditions directly related to the primitive data of the PDMP to ensure the existence of
an optimal control. The present work can be seen as a continuation of the results derived in our
previous work (report 3.3.1). Our main assumptions are written in terms of some integro-differential
inequalities related to the so-called expected growth condition, and geometric convergence of the
post-jump location kernel associated to the PDMP. An example based on the capacity expansion
problem is presented illustrating the possible applications of the results developed in this work.

The partner involved is INRIA CQFD. Professor O. Costa (Escola Politécnica da Universidade
de Sao Paulo, Brazil) international expert on optimal stochastic control has worked with the team
on this task as an external provider of services.

1 Context

Piecewise-deterministic Markov processes (PDMP’s) have been introduced in the literature by
M.H.A. Davis [1, 2] as a general class of stochastic models suitable for formulating optimiza-
tion problems in queueing and inventory systems, maintenance/replacement models, investment
scheduling, and many other areas of operations research. PDMP’s are a family of Markov pro-
cesses involving deterministic trajectories punctuated by random jumps. On a state space E the
motion of a PDMP is determined by three parameters: the flow ¢, the jump rate A, and the tran-
sition measure (). Between two jumps, the trajectory of a PDMP follows the flow ¢. The jumps
occur either spontaneously in a Poisson-like fashion with rate A or when the flow hits the boundary
of the state-space. In either case the location of the process at the jump time is selected by the
transition measure Q.

Control of PDMP’s has received considerable attention in the literature and the interested reader
may consult the book by M.H.A. Davis [2] and the references therein to get a rather complete view
of the general theory related to this class of processes. In the previous work (see report 3.3.1) it
was studied the long run average continuous control problem of PDMP’s taking values in a general
Borel space. At each point x of the state space a control variable is chosen from a compact action
set U(z) and is applied on the jump parameter A\ and transition measure ). The goal was to
minimize the long run average cost, which was composed of a running cost and a boundary cost
(which is added each time the PDMP touches the boundary). Both costs were assumed to be
positive but not necessarily bounded. As far as the authors are aware of, this was the first time
that this kind of problem was considered in the literature. The approach developed in our previous
work (report 3.3.1) to study the long run average control problem of PDMP’s was somehow related
to the classical analysis of Markov Decision Processes. In particular sufficient conditions were
derived in our previous work (see report 3.3.1) to ensure the existence of an optimal control by
using the so-called vanishing discount approach. These conditions were mainly expressed in terms
of the relative difference hq(z) = J3(x) — J5(xo) of the a-discount value functions [J3. Roughly
speaking, it was shown in our previous work (see report 3.3.1) that if there exists a fixed state x
such that o 75 (zo) is bounded in a neighborhood of a = 0 and if the relative difference h,, satisfies
—Kj, < ho(z) < b(z) for a non-negative constant Kj and a measurable function b then there exists
an optimal control. From a practical point of view this result is not completely satisfactory due to



the fact that these conditions depend on the a-discount value function J5 which may be difficult
to be obtained explicitly even for simple examples.

2 Results

The aim of the present work is to overcome this difficulty by providing tractable conditions that
are directly related to the primitive data (¢, A, Q) of the PDMP to ensure the existence of an
optimal control. The problem of finding sufficient conditions based on the primitive data of the
process is a traditional subject in the literature of the long run average control problem for Markov
Decision Processes. Without attempting to present an exhaustive panorama on this topic, the
interested reader may consult [3, 4, 5, 6, 7] and the references therein for detailed discussions on this
problem. More precisely, we present in this paper some assumptions based on integro-differential
inequalities related to a positive test function g and 7, and on the geometric convergence of the
post-jump location kernel associated to the PDMP, so that, under these hypotheses, we can show
that a3 (zo) is bounded in a neighborhood of a = 0 and that the relative difference of the a-
discount value function h, belongs to a weighted-norm space of functions, labeled B,(E). Another
important difference with respect to the previous work (see report 3.3.1) is that in the present work
hq is not necessarily bounded below by a constant. Indeed, this last property was crucial in the
previous work (see report 3.3.1) to show that there exists a solution to an average cost optimality
inequality (ACOI) having this same boundedness property, leading to the existence of an optimal
control for the PDMP. Here we can only show that a solution to the ACOI exists but belongs to
By(E). Consequently, the approach presented in the previous work (see report 3.3.1) cannot be
used in the present context and has to be refined.

3 Dissemination of results

The theoretical part of this work has been published in an international peer-reviewed journal
Journal of Applied Probability Vol. 46, No. 4, pp. 1157-1183, 2009 and is co-authored with O.L.V.
Costa (University of Sao Paulo, Brasil).
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