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This work deals with the long run average continuous control problem of piecewise deterministic
Markov processes (PDMP’s) taking values in a general Borel space and with compact action space
depending on the state variable. The control variable acts on the jump rate and transition measure
of the PDMP, and the running and boundary costs are assumed to be positive but not necessarily
bounded. Our first main result is to obtain an optimality equation for the long run average
cost in terms of a discrete-time optimality equation related to the embedded Markov chain given
by the post-jump location of the PDMP. Our second main result guarantees the existence of a
feedback measurable selector for the discrete-time optimality equation by establishing a connection
between this equation and an integro-differential equation. Our final main result is to obtain some
sufficient conditions for the existence of a solution for a discrete-time optimality inequality and
an ordinary optimal feedback control for the long run average cost using the so-called vanishing
discount approach.

The partner involved is INRIA CQFD. Professor O. Costa (Escola Politécnica da Universidade
de Sao Paulo, Brazil) international expert on optimal stochastic control has worked with the team
on this task as an external provider of services.

1 Context
A general family of non-diffusion stochastic models suitable for formulating many optimization
problems in several areas of operations research, namely piecewise-deterministic Markov processes
(PDMP’s), was introduced in [8], and [10]. These processes are determined by three local charac-
teristics; the flow φ, the jump rate λ and the transition measure Q. Starting from x the motion of
the process follows the flow φ(x, t) until the first jump time T1 which occurs either spontaneously
in a Poisson-like fashion with rate λ or when the flow φ(x, t) hits the boundary of the state-space.
In either case the location of the process at the jump time T1 is selected by the transition measure
Q(φ(x, T1), .) and the motion restarts from this new point as before. A suitable choice of the state
space and the local characteristics φ, λ, and Q provide stochastic models covering a great number
of problems of operations research [10].

As introduced by M.H.A. Davis in [10, page 134], there exist two types of control for PDMP’s:
continuous control, in which the control variable acts at all times on the process through the
characteristics (φ, λ,Q), and impulse control, used to describe control actions that intervene on the
process by moving it to a new point of the state space at some specific times. This work deals with
the long run average continuous control problem of PDMP’s taking values in a general Borel space.
At each point x of the state space a control variable is chosen from a compact action set U(x) and
is applied on the jump parameter λ and transition measure Q. The goal is to minimize the long
run average cost, which is composed of a running cost and a boundary cost (which is added each
time the PDMP touches the boundary). Both costs are assumed to be positive but not necessarily
bounded. As far as the authors are aware of, this is the first time that this kind of problem is
considered in the literature. Indeed, results are available for the long run average cost problem
but for impulse control see Costa [5], Gatarek [16] and the book by M.H.A. Davis [10] (see the
references therein). On the other hand, the continuous control problem has been studied only for
discounted costs by A. Almudevar [1], M.H.A. Davis [9, 10], M.A.H. Dempster and J.J. Ye [11, 12],
Forwick, Schäl, and Schmitz [15], M. Schäl [29], A.A. Yushkevich [33].
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2 Approach
Our approach to study the long run average control problem of PDMP’s is related to the analysis
of Markov Decision Processes (MDP’s in short). MDP’s have received considerable attention in
the literature both in the discrete and continuous-time context. Without attempting to present
an exhaustive panorama of MDP’s, the interested reader may consult the surveys [2, 19] and the
books [4, 21, 22, 28, 30] and the references therein to get a rather complete view of this research
field. A possible framework to study continuous-time Markov Decision Processes (MDP’s) consists
of reducing the original continuous-time control problem into a semi-Markov or discrete-time MDP
[3, 14, 28, 31, 32]. For a detailed discussion about these reduction techniques the reader is referred
to the recent reference [14]. The reduction method proposed in [14] consists of two steps. First
the original continuous-time MDP is converted into a Semi-Markov Decision Process (SMDP) in
which the decisions are selected only at the jumps epoch. Second, within the discounted cost
context, the SMDP is reduced into a discrete-time MDP. Regarding PDMP’s, the idea developed
by M.H.A. Davis is somehow related to the reduction technique previously described in the context
of MDP’s. It consists of reformulating the optimal control problem of a PDMP for a discounted
cost as an equivalent discrete-time Markov decision model in which the stages are the jump times
Tn of the PDMP. A somewhat different approach to the problem of controlling a PDMP through an
embedded discrete time MDP is also considered in [1], in which the decision function space is made
compact by permitting piecewise construction of an open-loop control function. It must be stressed
the fact that one of the key points in the development of these methods is that the control problem
under consideration is concerned with the discounted cost criteria. Obviously, as pointed out in
[14], it is well known that a SMDP with discounted cost can be reduced to a MDP with discounted
cost. Similarly, the approach adopted in [9] for PDMP’s with discounted cost is very natural since
the key idea is to re-write the integral cost as a sum of integrals between two consecutive jump
times of the PDMP and, by doing this, naturally obtaining the one step cost function for the
discrete-time Markov decision model. However, this decomposition for the long run average cost is
no longer possible to be done and, therefore, a more specific approach has to be developed. This is
one of the goals of the present work. It must be pointed out that there exists another framework
for studying continuous-time MDP’s in which the controller can choose continuously in time the
actions to be applied to the process. There exists an extensive literature within this context, see
for example [18, 19, 20, 27] and the references therein. This could be another way of studying
the control problem for PDMP’s with average cost. However, as far as the authors are aware of,
it is an open problem to convert a control problem for a PDMP into a continuous-time MDP. In
particular, the main problem is how to write explicitly the transition rate of a PDMP in terms of
its parameters: the state space E, its boundary ∂E and (φ, λ,Q).

3 Results
We consider in this work that the control acts only on (λ,Q). The main difficulty in considering
the control acting also on the flow comes from the fact that in such a situation the time t∗(x)
which the flow takes to hit the boundary starting from x and the first order differential operator X
associated to the flow would depend on the control. Under these conditions, it is far from obvious
to write an optimality equation for the long run average cost in terms of a discrete-time optimality
equation related to the embedded Markov chain given by the post-jump location of the PDMP.
This step is easier to derive in the situation studied in [9] which considers the control acting on all
the local characteristics (φ, λ,Q) of the PDMP since, as noted previously, for a discounted cost,
it is very natural to re-write the integral cost as a sum of integrals between two consecutive jump
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times of the PDMP obtaining naturally the one step cost function for the discrete-time Markov
decision model. However, this decomposition for the long run average cost is no longer possible to
be done and consequently, due this technical difficulty, the present approach may only be applied to
PDMP’s in which the control acts on the jump rate and transition measure. Nevertheless this work
seems to be the first attempt to study the average continuous control of PDMP’s. Furthermore it
should be noticed that, as illustrated in the example, in some cases the set up developed in this
work can cover some problems in which it is desired to control the flow in a “bang-bang” fashion.

Our first main result is to propose another approach for obtaining an optimality equation for
the long run average cost. It is shown that if there exist a measurable function h, a parameter ρ
and a measurable selector satisfying a discrete-time optimality equation related to the embedded
Markov chain given by the post-jump location of the PDMP, and also that an extra condition
involving the function h is verified then an optimal control can be obtained from the measurable
selector and ρ is the optimal cost.

Our second main result is to remove the hypothesis of the existence of a measurable selector
mentioned in the previous theorem and in fact, to guarantee the existence of a feedback measurable
selector (that is, a selector that depends on the present value of the state variable, provided that
the function h and parameter ρ satisfy the optimality equation. This is done by establishing a
link between the discrete-time optimality equation and an integro-differential equation (using the
weaker concept of absolute continuity along the flow of the value function). The common approach
for the existence of a measurable selector is to impose semicontinuity properties of the cost function
and to introduce the class of relaxed controls to get a compactness property for the action space.
By doing this one obtains an existence result but within the class of relaxed controls. However,
what is desired is to show the existence of an optimal control in the class of ordinary controls.
Combining the existence result within the class of relaxed controls with the connection between the
integro-differential equation and the discrete-time equation we can show that the optimal control
is non-relaxed and in fact it is an ordinary feedback control.

In general it is a hard task to get the equality in the solution of the discrete-time optimality
equation and verify the extra condition. A common approach to avoid this is to consider an
inequality instead of equality for the optimality equation, and to use an Abelian result to get the
reverse inequality (see for instance [21]). Our last main result is to obtain some sufficient conditions,
based on the value function of the discounted control problems, that guarantee the existence of a
solution for the discrete-time optimality inequality using the so-called vanishing discount approach
(see [21], page 83). The idea of using the vanishing discount approach to get an optimality condition
(i.e. a condition for the existence of an average policy) has been widely developed in the literature.
Different methods have been proposed based on conditions for ensuring the existence of a solution
to the average cost optimality equality, see for example [2, 25], and to the average cost optimality
inequality, see for example [23, 24, 26]. More recently, a new approach was proposed in [17, 20].
Combining our result with the link between the integro-differential equation and the discrete-time
equation we obtain the existence of an ordinary optimal feedback control for the long run average
cost. In order to do that we need first to establish an optimality equation for the discounted control
problem. It is worth mentioning that the sufficient condition to be derived in this work is mainly
based on the relative difference of the α-discount value functions while in [7] the main goal was to
derive conditions directly related to the primitive data of the PDMP to ensure that the vanishing
discount approach yields sufficient conditions for the existence of an optimal control.

A closely related paper to our work, but considering the discounted control case, is the paper
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by Forwick, Schäl, and Schmitz [15], which also considers unbounded costs and relaxed controls,
and obtain sufficient conditions for the existence of ordinary feedback controls. However, in [15] the
authors do not consider the long run average cost case neither the related limit problem associated
to the vanishing discount approach. Besides, unlike in [15], we consider here boundary jumps and
the control action space depending on the state variable. Note however that control on the flow is
not considered here, while it was studied in [15]. Finally it is worth mentioning that the authors
are studying in a companion work the important question of deriving sufficient stability conditions
(like those presented in [6], [13]) under which the conditions on the discounted value function used
in the vanishing discount approach are satisfied, tracing a parallel with the discrete-time case (see,
for instance, [17, 21]).

4 Dissemination of results
The theoretical part of this work the presentation of academic examples have been published in an
international peer-reviewed journal SIAM Journal of Control and Optimization Vol. 48, No. 7, pp.
4262-4291, 2010 and is co-authored with O.L.V. Costa (University of Sao Paulo, Brasil).
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