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The aim of this task is to propose a an application of our numerical optimal stopping procedure
to an example of corrosion in collaboration with Astrium. The partners involved are INRIA CQFD.
People involved are B. de Saporta (CQFD) and F. Dufour (CQFD) with the collaboration of H.
Zhang (CQFD).

1 Context
Piecewise-deterministic Markov processes (PDMP’s) have been introduced in the literature by [6]
as a general class of stochastic hybrid models. PDMP’s are a family of Markov processes involving
deterministic motion punctuated by random jumps. The motion of the PDMP includes both
continuous and discrete variables {(X(t),Υ(t))}. The hybrid state space (continuous/discrete) is
defined as Rd×M where M is a countable set. The process depends on three local characteristics,
namely the flow φ, the jump rate λ and the transition measure Q, which specifies the post-jump
location. Starting from (x, ν) ∈ Rd×M the motion of the process follows the trajectory (φν(x, t), ν)
until the first jump time T1 which occurs either spontaneously in a Poisson-like fashion with rate
λν(φν(x, t)) or when the flow φν(x, t) hits the boundary of the state-space. In either case the
location of the process at the jump time T1:

(
X(T1),Υ(T1)

)
=
(
Z1, y1

)
is selected by the transition

measure Qν(φν(x, T1), ·). Starting from
(
Z1, y1

)
, we now select the next inter-jump time T2 − T1

and postjump location
(
X(T2),Υ(T2)

)
=
(
Z2, y2

)
. This gives a piecewise deterministic trajectory

for {(X(t),Υ(t))} with jump times {Tk} and post jump locations {(Zk, yk)} which follows the flow
φ between two jumps. A suitable choice of the state space and the local characteristics φ, λ, and Q
provides stochastic models covering a great number of problems of operations research, see [6]. To
simplify notation, there is no loss of generality in considering that the state space of the PDMP is
taken simply as a subset of Rd rather than a product space Rd×M as described above, see Remark
24.9 in [6] for details.

An impulse control strategy consists in a sequence of single interventions introducing a jump of
the process at some controller-specified stopping time and moving the process at that time to some
new point in the state space. Our impulse control problem consists in choosing a strategy (if it
exists) that minimizes the expected sum of discounted running and intervention costs up to infinity,
and computing the optimal cost thus achieved. Many applied problems fall into this class, such as
inventory problems in which a sequence of restocking decisions is made, or optimal maintenance of
complex systems with components subject to failure and repair.

Impulse control problems of PDMP’s in the context of an expected discounted cost have been
considered in [5, 9, 10, 11, 14]. Roughly speaking, in [5] the authors study this impulse control
problem by using the value improvement approach while in [9, 10, 11, 14] the authors choose to
analyze it by using the variational inequality approach. In [5], the authors also consider a numer-
ical procedure. By showing that iteration of the single-jump-or-intervention operator generates a
sequence of functions converging to the value function of the problem, they derive an algorithm
to compute an approximation of that value function. Their approach is also based on a uniform
discretization of the state space similar to the one proposed by [13]. In particular, they derive a
convergence result for the approximation scheme but no estimation of the rate of convergence is
given. To the best of our knowledge, it is the only paper presenting a computational method for
solving the impulse control problem for a PDMP in the context of discounted cost. Remark that
a similar procedure has been applied by [3] to derive a numerical scheme for the impulse control
problem with a long run average cost.
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2 Approach
Our approach is also based on the iteration of the single-jump-or-intervention operator, but we
want to derive a convergence rate for our approximation. Our method does not rely on a blind
discretization of the state space, but on a discretization that depends on time and takes into account
the random nature of the process. Our approach involves a quantization procedure. Roughly
speaking, quantization is a technique that approximates a continuous state space random variable
X by a a random variable X̂ taking only finitely many values and such that the difference between
X and X̂ is minimal for the Lp norm. Quantization methods have been developed recently in
numerical probability, nonlinear filtering or optimal stochastic control with applications in finance,
see e.g. [1, 2, 15, 16, 17, 18] and references therein. It has also been successfully used by the authors
to compute an approximation of the value function and optimal strategy for the optimal stopping
problem for PDMP’s in [de Saporta et al.(2010)de Saporta, Dufour, and Gonzalez].

Although the value function of the impulse control problem can be computed by iterating
implicit optimal stopping problems, see [5] Proposition 2 or [6] Proposition 54.18, from a numerical
point of view the impulse control is much more difficult to handle than the optimal stopping
problem. Indeed, for the optimal stopping problem, the value function is computed as the limit of
a sequence (vn) constructed by iterating an operator L. This iteration procedure yields an iterative
construction of a sequence of random variables vn(Zn) (where (Zn) is an embedded discrete-time
process). This was the keystone of our approximation procedure. As regards impulse control, the
iterative construction for the corresponding random variables does not hold anymore, see Section ??
for details. This is mostly due to the fact that not only does the controller choose times to stop
the process, but they also choose a new starting point for the process to restart from after each
intervention. This makes the single-jump-or-intervention operator significantly more complicated
to iterate that the single-jump-or-stop operator used for optimal stopping. We manage to overcome
this extra difficulty by using two series of quantization grids instead of just the one we used for
optimal stopping.

3 Results
We have managed to propose a numerical scheme to approximate the value function of a general
impulse control problem for PDMPs. We also derived an error bound for the convergence of our
scheme. It is based on two different series if quantization grids.

4 Dissemination of results
This work was presented in a conference [8] and published in an international peer-reviewed journal
[7].
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