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The aim of this task is to propose a computational method for optimal stopping of a piecewise
deterministic Markov process, analyze the convergence of our scheme and derive bounds for the
convergence rate. The partners involved are INRIA CQFD and Astrium. People involved are B.
de Saporta (CQFD), F. Dufour (CQFD) and C. Elegbede (Astrium), with the collaboration of K.
Gonzalez (CQFD) and H. Zhang (CQFD).

1 Context
Piecewise-deterministic Markov processes (PDMP’s) have been introduced in the literature by
M.H.A. Davis [11] as a general class of stochastic models. PDMP’s are a family of Markov processes
involving deterministic motion punctuated by random jumps. The motion of the PDMP {X(t)}
depends on three local characteristics, namely the flow φ, the jump rate λ and the transition measure
Q, which specifies the post-jump location. Starting from x the motion of the process follows the
flow φ(x, t) until the first jump time T1 which occurs either spontaneously in a Poisson-like fashion
with rate λ(φ(x, t)) or when the flow φ(x, t) hits the boundary of the state-space. In either case
the location of the process at the jump time T1: X(T1) = Z1 is selected by the transition measure
Q(φ(x, T1), ·). Starting from Z1, we now select the next interjump time T2 − T1 and postjump
location X(T2) = Z2. This gives a piecewise deterministic trajectory for {X(t)} with jump times
{Tk} and post jump locations {Zk} which follows the flow φ between two jumps. A suitable choice
of the state space and the local characteristics φ, λ, and Q provides stochastic models covering a
great number of problems of operations research [11].

The optimal stopping problem consists in finding the best time to stop the process in order
to optimize the expectation of a reward function g of the process at that time. The best possible
performance is called the value function of the problem, and a stopping time reaching this optimal
performance is called an optimal stopping time.

Optimal stopping problems have been studied for PDMP’s in [8, 10, 11, 13, 15, 17]. In [15] the
author defines an operator related to the first jump time of the process, and shows that the value
function of the optimal stopping problem is a fixed point for this operator. The basic assumption
in this case is that the final cost function is continuous along trajectories, and it is shown that the
value function will also have this property. In [13, 17] the authors adopt some stronger continuity
assumptions and boundary conditions to show that the value function of the optimal stopping
problem satisfies some variational inequalities, related to integro-differential equations. In [11],
M.H.A. Davis assumes that the value function is bounded and locally Lipschitz along trajectories to
show that the variational inequalities are necessary and sufficient to characterize the value function
of the optimal stopping problem. In [10], the authors weakened the continuity assumptions of
[11, 13, 17]. A paper related to our work is [8] by O.L.V. Costa and M.H.A. Davis. It is the only
one presenting a computational technique for solving the optimal stopping problem for a PDMP
based on a discretization of the state space similar to the one proposed by H. J. Kushner in [16].
In particular, the authors in [8] derive a convergence result for the approximation scheme but no
estimation of the rate of convergence is derived.

2 Approach
Our approach is based on quantization. Quantization methods have been developed recently in
numerical probability, nonlinear filtering or optimal stochastic control with applications in finance
[6, 7, 18, 19, 20, 21]. Roughly speaking, the approach developed in [6, 7, 21] for studying the optimal
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stopping problem for a continuous-time diffusion process {Y (t)} is based on a time-discretization
scheme to obtain a discrete-time Markov chain {Y k}. It is shown that the original continuous-time
optimization problem can be converted to an auxiliary optimal stopping problem associated with
the discrete-time Markov chain {Y k}. Under some suitable assumptions, a rate of converge of the
auxiliary value function to the original one can be derived. Then, in order to address the optimal
stopping problem of the discrete-time Markov chain, a twofold computational method is proposed.
The first step consists in approximating the Markov chain by a quantized process. There exists an
extensive literature on quantization methods for random variables and processes, see [14, 18, 21]
and references therein. The second step is to approximate the conditional expectations which
are used to compute the backward dynamic programming formula by the conditional expectation
related to the quantized process. This procedure leads to a tractable formula called a quantization
tree algorithm (see Proposition 4 in [6] or section 4.1 in [21]). Providing the cost function and the
Markov kernel are Lipschitz, some bounds and rates of convergence are obtained (see for example
section 2.2.2 in [6]).

As regards PDMP’s, it was shown in [15] that the value function of the optimal stopping problem
can be calculated by iterating a functional operator, labeled L, which is related to a continuous-time
maximization and a discrete-time dynamic programming formula. Thus, in order to approximate
the value function of the optimal stopping problem of a PDMP {X(t)}, a natural approach would
have been to follow the same lines as in [6, 7, 21]. However their method cannot be directly applied
to our problem for two main reasons related to the specificities of PDMP’s.

First, PDMP’s are in essence discontinuous at random times. Therefore, as pointed out in [15],
it will be problematic to convert the original optimization problem into an optimal stopping prob-
lem associated to a time discretization of {X(t)} with nice convergence properties. In particular,
it appears ill-advised to propose as in [6] a fixed-step time-discretization scheme {X(k∆)} of the
original process {X(t)}. Besides, another important intricacy concerns the transition semigroup
{Pt}t∈R+ of {X(t)}. On the one hand, it cannot be explicitly calculated from the local charac-
teristics (φ, λ,Q) of the PDMP (see [9, 12]). Consequently, it will be complicated to express the
Markov kernel P∆ associated to the Markov chain {X(k∆)}. On the other hand, the Markov chain
{X(k∆)} is in general not even a Feller chain (see [11, pages 76-77]), therefore it will be hard to
ensure it is K-Lipschitz (see Definition 1 in [6]).

Second, the other main difference stems from the fact that the function appearing in the back-
ward dynamic programming formula associated to L and the reward function g is not continuous
even if some strong regularity assumptions are made on g. Consequently, the approach developed in
[6, 7, 21] has to be refined since it can only handle conditional expectations of Lipschitz-continuous
functions.

3 Results
By using the special structure of PDMP’s, we are able to overcome both the above-mentionned
obstacles. Indeed, associated to the PDMP {X(t)}, there exists a natural embedded discrete-time
Markov chain {Θk} with Θk = (Zk, Sk) where Sk is given by the inter-arrival time Tk − Tk−1 and
Zk the post-jump locations. The main operator L can be expressed using the chain {Θk} and
a continuous-time maximization. We first convert the continuous-time maximization of operator
L into a discrete-time maximization by using a path-dependent time-discretization scheme. This
enables us to approximate the value function by the solution of a backward dynamic programming
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equation in discrete-time involving conditional expectation of the Markov chain {Θk}. Then, a
natural approximation of this optimization problem is obtained by replacing {Θk} by its quantized
approximation. It must be pointed out that this optimization problem is related to the calculation
of conditional expectations of indicator functions of the Markov chain {Θk}. As said above, it is not
straightforward to obtain convergence results as in [6, 7, 21]. We deal successfully with indicator
functions by showing that the event on which the discontinuity actually occurs is of small enough
probability. This enables us to provide rate of convergence for the approximation scheme.

In addition and more importantly, this numerical approximation scheme enables us to propose a
computable stopping rule which also is an ε-optimal stopping time of the original stopping problem.
Indeed, for any ε > 0 one can construct a stopping time, labeled τ , such that

V (x)− ε ≤ Ex
[
g(X(τ))

]
≤ V (x)

where V (x) is the value function associated to the original stopping problem when the process
starts from point x. Our computational approach is attractive in the sense that it does not require
any additional calculations. Moreover, we can characterize how far it is from optimal in terms of
the value function. In [6, section 2.2.3, Proposition 6], another criteria for the approximation of
the optimal stopping time has been proposed. In the context of PDMP’s, it must be noticed that
an optimal stopping time does not generally exists as shown in [15, section 2].

4 Applications
The numerical procedure described above has been first tested on a simple academic model of
PDMP. Then, we have successfully implemented it to solve a maintenance problem submitted by
Astrium. We consider a metallic structure subject to corrosion and want to determine the best
time to intervene before the failure.

5 Dissemination of results
The theoretical part of this work with rigorous proofs and the academic example is published in
an international peer-reviewed journal Annals of Applied Probability [2]. The detailed study of the
corrosion model proposed by Astrium is given in the proceeding of Lambda-Mu 17 conference, a
French peer-reviewed conference on reliability and safety, and co-signed by CQFD and Astrium [3].
It is also submitted for publication in an international peer-reviewed journal [4]. B. de Saporta
and F. Dufour were invited to present these results at the workshop Modern trends in controlled
stochastic processes in Liverpool [1]. F. Dufour was invited to present these results at SPA2010
conference in Osaka [5].
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