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The aim of this task is to propose a numerical method for the optimal stopping of piecewise
deterministic Markov processes when the only observations available are partial and noisy. The
partners involved are INRIA CQFD. People involved are A. Brandejsky (CQFD), B. de Saporta
(CQFD) and F. Dufour (CQFD).

1 Context
The aim of this paper is to investigate an optimal stopping problem under partial observation for
piecewise-deterministic Markov processes (PDMP) both from the theoretical and numerical points
of view. PDMP’s have been introduced by Davis [10] as a general class of stochastic models.
They form a family of Markov processes involving deterministic motion punctuated by random
jumps. The motion depends on three local characteristics, the flow Φ, the jump rate λ and the
transition measure Q, which selects the post-jump location. Starting from the point x, the motion
of the process (Xt)t≥0 follows the flow Φ(x, t) until the first jump time T1, which occurs either
spontaneously in a Poisson-like fashion with rate λ(Φ(x, t)) or when the flow hits the boundary of
the state space. In either case, the location of the process at T1 is selected by the transition measure
Q(Φ(x, T1), ·) and the motion restarts from XT1 . We define similarly the time until the next jump
and the next post-jump location and so on. One important property of a PDMP, relevant for the
approach developed in this paper, is that its distribution is completely characterized by the discrete
time Markov chain (Zn, Sn)n∈N where Zn is the n-th post-jump location and Sn is the n-th inter-
jump time. A suitable choice of the state space and local characteristics provides stochastic models
covering a large number of applications such as operations research [10, section 33], reliability [12],
neurosciences [19], internet traffic [9], finance [4]. This list of examples and references is of course
not exhaustive.

In this paper, we consider an optimal stopping problem for a partially observed PDMP (Xt)t≥0.
Roughly speaking, the observation process (Yt)t≥0 is a point process defined through the embedded
discrete time Markov chain (Zn, Sn)n∈N. The inter-arrival times are given by (Sn)n∈N and the
marks by a noisy function of (Zn)n∈N. For a given reward function g and a computation horizon
N ∈ N, we study the following optimal stopping problem

sup
σ≤TN

E [g(Xσ)] ,

where TN is the N -th jump time of the PDMP (Xt)t≥0, σ is a stopping time with respect to the
natural filtration FY = (FYt )t≥0 generated by the observations (Yt)t≥0. In some applications, it may
be more appropriate to consider a fixed optimization horizon tf rather than the random horizon
TN . This is a difficult problem with few references in the literature, see for instance [13] where
the underlying process is not piecewise deterministic. Regarding PDMP’s, this problem could be
addressed using the same ideas as in [7]. It involves the time-augmented process (Xt, t). Although
this process is still a PDMP, its local characteristics may not have the same good properties as
those of the original process leading to several new technical difficulties.

2 Approach
A general methodology to solve such a problem is to split it into two sub-problems. The first one
consists in deriving the filter process given by the conditional expectation of Xt with respect to the
observed information FYt . Its main objective is to transform the initial problem into a completely
observed optimal stopping problem where the new state variable is the filter process. The second
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step consists in solving this reformulated problem, the new difficulty being its infinite dimension.
Indeed, the filter process takes values in a set of probability measures.

Our work is inspired by [20] which deals with an optimal stopping problem under partial ob-
servation for a Markov chain with finite state space. The authors study the optimal filtering and
convert their original problem into a standard optimal stopping problem for a continuous state
space Markov chain. Then they propose a discretization method based on a quantization tech-
nique to approximate the value function. However, their method cannot be directly applied to our
problem for the following main reasons related to the specificities of PDMPs.

Firstly, PDMPs are continuous time processes. Although the dynamics can be described by
the discrete-time Markov chain (Zn, Sn)n∈N, this optimization problem remains intrinsically a
continuous-time optimization problem. Indeed, the performance criterion is maximized over the
set of stopping times defined with respect to the continuous-time filtration (FYt )t≥0. Consequently,
our problem cannot be converted into a fully discrete time problem.

Secondly, the distribution of a PDMP combines both absolutely continuous and singular compo-
nents. This is due to the existence of forced jumps when the process hits the boundary of the state
space. As a consequence the derivation of the filter process is not straightforward. In particular,
the absolute continuity hypothesis (H) of [20] does not hold.

Thirdly, in our context the reformulated optimization problem is not standard, unlike in [20]. As
already explained, this reformulated optimization problem combines continuous-time and discrete-
time features. Consequently, this problem does not correspond to the classical optimal stopping
problem of a discrete-time Markov chain. Moreover, it is different from the optimal stopping
problem of a PDMP under complete observation mainly because the new state variables given by
the Markov chain (Πn, Sn)n≥0 are not the underlying Markov chain of some PDMP. Therefore the
results of the literature [11, 15, 20] cannot be used.

Finally, a natural way to proceed with the numerical approximation is then to follow the ideas
developed in [11, 20] namely to replace the filter Πn and the inter-jump time Sn by some finite
state space approximations in the dynamic programming equation. However, a noticeable difference
from [11] lies in the fact that the dynamic programming operators therein were Lipschitz continuous
whereas our new operators are only Lipschitz continuous between some points of discontinuity. We
overcome this drawback by splitting the operators into their restrictions onto their continuity sets.
This way, we obtain not only an approximation of the value function of the optimal stopping
problem but also an ε-optimal stopping time with respect to the filtration (FYt )t≥0 that can be
computed in practice.

Our approximation procedure for random variables is based on quantization. There exists an
extensive literature on this method. The interested reader may for instance consult [14, 18] and
the references within. The quantization of a random variable X consists in finding a finite grid
such that the projection X̂ of X on this grid minimizes some Lp norm of the difference X − X̂.
Roughly speaking, such a grid will have more points in the areas of high density of X. As explained
for instance in [18, section 3], under some Lipschitz-continuity conditions, bounds for the rate of
convergence of functionals of the quantized process towards the original process are available, which
makes this technique especially appealing. Quantization methods have been developed recently in
numerical probability or optimal stochastic control with applications in finance, see e.g. [18, 2, 3].

3 Results
We have given a recursive form for the filter of the state space of a PDMP. We have derived the
dynamic programming equations for the partially observed optimal stopping problem for PDMPs
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and we have proposed a numerical approximation for the value function and close to optimal
stopping time. Our results were tested on an academic example.

4 Dissemination of results
This work was presented in an invited conference [6] and published in an international peer-reviewed
journal [5].
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