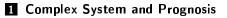
Prognosis of a complex system for maintenance optimization

Lorton Ariane Academic Supervisors : A.Grall, M.Fouladirad (UTT) Industrial Supervisors : V. Feuillard, F. Mangeant (EADS-IW)

November 26, 2010

Outlines


1 Complex System and Prognosis

2 Prognosis for IW

3 Subject and First Results

4 Conclusion

Outlines

2 Prognosis for IW

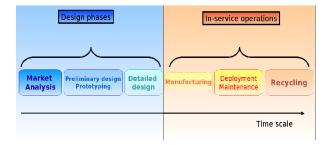
- **3** Subject and First Results
- 4 Conclusion

What is a complex system?

<u>Goal</u> : Prognosis of the system

A touch of systems engineering...

- A physical object (multi-levels, multi-physics, ...)
- **Some knowledge around the system** (functional, logical, physical)
- A position in the life cycle (design, operational, end-of-life, ...)
- Different Actors (designers, engineers, maintenance operators, ...)



EAD

Different Phases of the Life Cycle

- Global System vision
- Few Data
- Page 5 Uncertainties

- Precise Vision
- Data
- Deterministic

A definition per actor

End User	Goals	Metrics	
Program Manager	Assess the economic viability of prognosis technology for spe- cific applications before it can be approved and funded	Cost-benefit type metrics that translate performance in terms of tangible and intangible cost savings	
Plant manager	Resource allocation and mis- sion planning based on avail- able prognostic information	Accuracy and precision based metrics that compute RUL es- timates for specific Unit Un- der Test (UUT). Such predic- tions are based on degradation or damage accumulation mod- els	
Operator	Take appropriate action and carry out re planning in the event of contingency during mission	Accuracy and precision based metrics that compute RUL esti- mates for specific UUTs. These predictions are based on fault growth models for critical fail- ures	
Maintainer	Plan maintenance in advance to reduce UUT downtime and maximize availability	Accuracy and precision based metrics that compute RUL es- timates based on damage accu- mulation models	

Figure: Needs identified for **Operations** purposes

NASA classification proposal of prognosis metrics based on end-user requirements(2/2)

End User	Goals	Metrics
Designer	Implement the prognostic sys- tem within the constraints of user specification. Improve performance	Reliability based metrics to evaluate a design and identify performance bottlenecks. Computational performance metrics to meet resource constraints.
Researcher	Develop and implement robust performance assessment algo- rithms with desired confidence levels	Accuracy and precision based metrics that employ uncer- tainty management and out- put probabilistic predictions in presence of uncertain condi- tions

Figure: Needs identified for Engineering purposes

End User	Goals	Metrics
Policy makers	To assess potential hazards (safety, economic and social) and establish policies to mini- mize their effects	Cost benefit risk measures, accuracy and precision based RUL measures to establish guidelines and timelines for phasing out of aging fleet and/or resource allocation for future projects

Figure: Needs identified for Regulatory purposes

Outlines

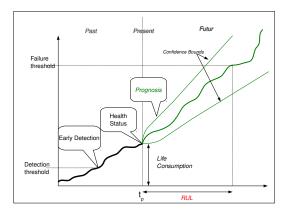
1 Complex System and Prognosis

2 Prognosis for IW

3 Subject and First Results

4 Conclusion

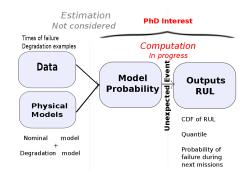
Global Objectives for IW


3 Main Objectives

What could I expect from prognosis in maintenance terms?

- Which reachable results?
- Should I invest?
- How could I get it?
 - what do I need on my system to do prognosis?
 - how much should I pay?
- Where is the prognosis in the Global Health Assessment Process?
 - Links with Diagnosis
 - Industrial Process

Our Prognosis



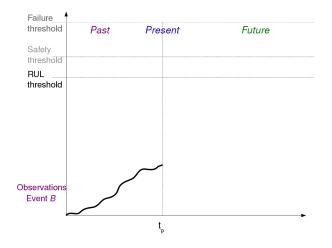
Our Definition

Prognosis consists on a supposition about the futur of the system considering past, present and futur information.

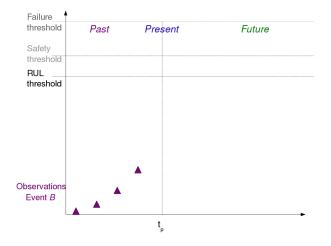
Page 10

Our choice : Probabilistic Modeling

Specificities

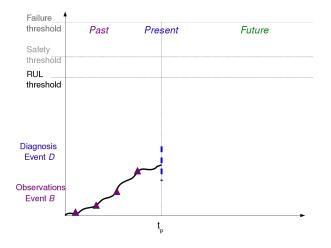

Non Safety

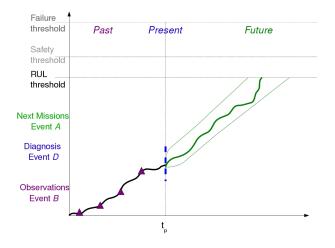
- Actor : Maintenance (operator, maintener)
- Result : RUL density (include A, R) : conditional quantity

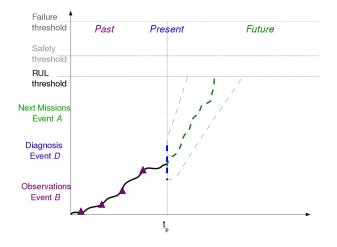


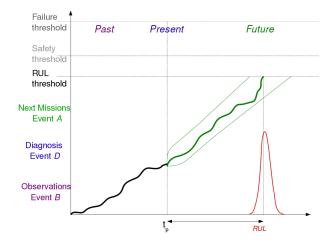
Failure	•		
threshold	Past	Present	Future
Safety threshold			
RUL			
threshold			
		t p	

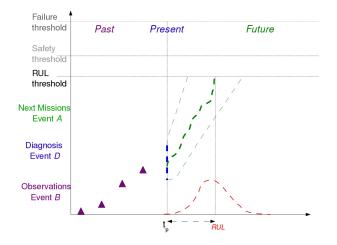


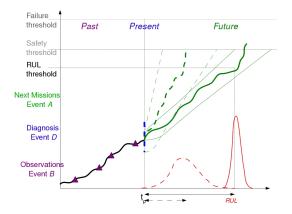












Calcul of Remaining Useful Life

RUL Definition

Remaining Time before an unexpected event using past,present and futur knowledges of the system

Outlines

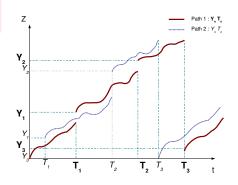
1 Complex System and Prognosis

2 Prognosis for IW

- **3** Subject and First Results
- 4 Conclusion

November 26, 2010

System Modeling : Piecewise Deterministic Markov Process


Definition

Physical trajectories of the process cut by random gaps

$$Z_t = \psi(Y_n, t - T_n)$$

<u>Motivation</u>

- Physical Degradation (Experts Knowleges);
- Usual Markov Generalization (λ, μ) ;
- Hybrid Process : Different environmental conditions;
- Markovian : Feasible Computation

EADS

Methodology : Two steps

RUL_t : Conditional probability + Reliability Computation

Step 1

Conditional probability

- Including past (B) and present (D) information;
- Use of particles filtering Methods. (Del Moral)

Step 2

Reliability Calcul

- Different Methods for PDMP;
- Including Futur (A) like mission conditions.

Dynamic Computation of the RUL and use of on line information

Result(1) : RUL through time

COMPLEX SYSTEM

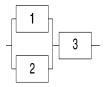
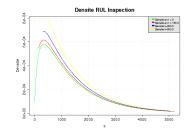



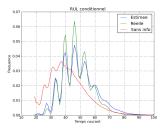
Figure: Reliability Diagram

LifeTime

Figure: RULs through time

- Rates
- Reliability Diagramm

Dynamic adaptation of the prognosis throughout the life of the system


Result(2) : RUL for different information

COMPONENT LEVEL

Figure: Harmonic Oscillator

- Nominal Behaviour
- Degradation : Mass Increasing
- Unexpected Event : Amplitude Threshold

Figure: RUL under several conditions

Impact of available information on the quality of the prognosis

Outlines

1 Complex System and Prognosis

2 Prognosis for IW

3 Subject and First Results

4 Conclusion

Conclusion and Perspectives

Achievements :

- Definition of a prognosis in industrial context;
- Identification of a global methodology for prognosis computation;
- Computation of RULs on simple examples;
- Methodology of RULs computation on simple PDMPs (assumptions required)

Perspectives :

- Global Methodology on PDMPs (mathematical problem : less assumptions)
- Optimization of Information for Prognosis Results (French Conference $\lambda \mu$) for Design Perspectives

